skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gupta, Sounak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The rapid growth in the parallelism of multi-core processors has opened up new opportunities and challenges for parallel simulation discrete event simulation (PDES). PDES simulators attempt to find parallelism within the pending event set to achieve speedup. Typically the pending event set is sorted to preserve the causal orders of the contained events. Sorting is a key aspect that amplifies contention for exclusive access to the shared event scheduler and events are generally scheduled to follow the time-based order of the pending events. In this work we leverage a Ladder Queue data structure to partition the pending events into groups (called buckets) arranged by adjacent and short regions of time. We assume that the pending events within any one bucket are causally independent and schedule them for execution without sorting and without consideration of their total time-based order. We use the Time Warp mechanism to recover whenever actual dependencies arise. Due to the lack of need for sorting, we further extend our pending event data structure so that it can be organized for lock-free access. Experimental results show consistent speedup for all studied configurations and simulation models. The speedups range from 1.1 to 1.49 with higher speedups occurring with higher thread counts where contention for the shared event set becomes more problematic with a conventional mutex locking mechanism. 
    more » « less
  2. Multi-core and many-core processing chips are becoming widespread and are now being widely integrated into Beowulf clusters. This poses a challenging problem for distributed simulation as it now becomes necessary to extend the algorithms to operate on a platform that includes both shared memory and distributed memory hardware. Furthermore, as the number of on-chip cores grows, the challenges for developing solutions without significant contention for shared data structures grows. This is especially true for the pending event list data structures where multiple execution threads attempt to schedule the next event for execution. This problem is especially aggravated in parallel simulation, where event executions are generally fine-grained leading quickly to non-trivial contention for the pending event list. This manuscript explores the design of the software architecture and several data structures to manage the pending event sets for execution in a Time Warp synchronized parallel simulation engine. The experiments are especially targeting multi-core and many-core Beowulf clusters containing 8-core to 48-core processors. These studies include a two-level structure for holding the pending event sets using three different data structures, namely: splay trees, the STL multiset, and ladder queues. Performance comparisons of the three data structures using two architectures for the pending event sets are presented. 
    more » « less